
Bayesian Networks for Micromanagement
Decision Imitation in the RTS Game Starcraft

Ricardo Parra and Leonardo Garrido

Tecnológico de Monterrey, Campus Monterrey
Ave. Eugenio Garza Sada 2501. Monterrey, México

{a00619071,leonardo.garrido}@itesm.com

Abstract. Real time strategy (RTS) games provide various research
areas for Artificial Intelligence. One of these areas involves the manage-
ment of either individual or small group of units, called micromanage-
ment. This research provides an approach that implements an imitation
of the player’s decisions as a mean for micromanagement combat in the
RTS game Starcraft. A bayesian network is generated to fit the decisions
taken by a player and then trained with information gather from the
player’s combat micromanagement. Then, this network is implemented
on the game in order to enhance the performance of the game’s built-in
Artificial Intelligence module. Moreover, as the increase in performance
is directly related to the player’s game, it enriches the player’s gaming
experience. The results obtained proved that imitation through the im-
plementation of bayesian networks can be achieved. Consequently, this
provided an increase in the performance compared to the one presented
by the game’s built-in AI module.

Keywords: Bayesian Networks, RTS Video Games, Intelligent Autonomous
Agents

1 Introduction

The video game industry has been in constant development along the latest
years. Numerous advancements have been made on graphics improvement in or-
der to produce more realistic game environments, as well as the hardware that
is required to handle these upgrades. The research area known as Artificial In-
telligence (AI) has also its important place in the video game industry, among
developers and researchers. AI is applied, on most part, to those units or char-
acters that are known as non-playable characters (NPCs) in order to generate
behaviours and as a medium for making decision, either autonomously or collec-
tively. NPCs, as its name express, are all of the units on every game that are not
controlled or modified by any player. A variety of algorithms, learning methods
and reactive methods have been applied in games to provide a better gaming
experience to the players.

Real time strategy (RTS) games are a stochastic, dynamic, and partially ob-
servable genre of video games [2]. Due to their strategic nature, RTS games re-
quire to continuously update the decisions, either from a player or the game’s AI



module. These type of games require throughout planning of strategies accord-
ing to available information they have access to, such as disposable resources,
available units and possible actions. The RTS game that was used along this
research is titled ”Starcraft: Broodwar”[3].

In the RTS game Starcraft, each player can posses up to a population equiv-
alent to 200 units. Hence, the management of units can be divided into two seg-
ments: macromanagement and micromanagement. Macromanagement is usually
regarded as the highest level of planning. It involves the management of resources
and units productions. Micromanagement, on the other hand, refers to the indi-
vidual control of units on combat. Micromanagement applied to a player’s game
require a large amount of time and precision.

Performing the necessary micromanagement tactics on 200, 100 or even 50
units can become a challenge that many players can’t overcome. Hence, a method
or process is required in order to continuously generate micromanagement de-
cisions along the game or combat. Nevertheless, given that the environment
provided by a RTS game can be partially observable, an approach that can cope
with uncertainty is required. Moreover, if the output of the process can be match
to an individual’s personal strategy, the performance on a full scale game could
be higher.

Considering the environment is partially observable, a bayesian network ap-
proach was implemented. Bayesian networks (BN) are one of the most appealed
techniques to learn and solve problems while coping with uncertainty. BNs use
probability and likelihood that specific success of events given a set of evi-
dence. Moreover, it represents its model through compact acyclic directed graphs
(DAG).

This paper exploits two vital tools that provides both graphical model and
coded libraries, GeNIe and SMILE respectively, developed by the Decision Sys-
tems Laboratory of the University of Pittsburgh [4]. The GeNIe (Graphical
Network Interface) software is the graphical model for the portable Bayesian
network inference engine SMILE (Structural Modelling, Inference, and Learning
Engine). GeNIe provides a graphical editor where the user can create a network,
modify nodes properties, establish the conditional dependencies and much more.
SMILE are a platform independent C++ libraries with classes supporting object
oriented programming.

2 Related work

In the latest years, video games have been exploited as research platforms for
AI. The implementation of bayesian networks on games, as well as different ap-
proaches to micromanagement have capture the attention of different researchers.
In Cummings et al.[5], a bayesian network approach for decision making was im-
plemented in order to determine which chest to open out of two possible options.
They use information recorded about previous open chests in order to calculate
the probabilities for the CPT’s of the nodes.



There has been previous work where bayesian networks have been imple-
mented in RTS games. In their work, Synnaeve and Bessiere[6]worked under the
assumption that decisions made by human players might have a mental proba-
bility model about opponents opening strategies. They used a data set presented
on Weber and Mateas[7] work, containing 9316 Starcraft game logs and applied
it to a bayesian model they proposed for opening recognition. They implement a
backtracked model that helped them cope with the noise produced from missing
data. The results involved a positive performance, even in the presence of noise
due to removal of observations.

Further work of Synnaeve and Bessiere [8] involves unit control for the RTS
game Starcraft. They propose a sensory motor bayesian framework for deciding
the course of actions and the direction it should take. They make use of variables
such as possible directions, objective direction and include other variables that
represent damage, unit’s size and priorities. They also applied potential fields
that influence the units depending on their type and goal for complementing the
decision making.

Moreover, more research related to micromanagement has been made in the
work presented by Szczepanski and Aamodt[9]. They applied case based rea-
soning to the RTS game Warcraft3 for unit control. The case based reasoning
received the game’s state in order to retrieve the decisions of the most simi-
lar case and adapt it. Then, the unit receives a command with the information
on how to respond to that specific case. This process is repeated every second
during the experiment. The results from their experiments describe a consistent
increase on the performance displayed by the AI against its opponents.

3 Bayesian networks

The Bayesian Networks (BN), also referred as belief networks, are directed graph
models used to represent a specific domain along with its variables and their
mutual relationships. They make use of the Bayes’ Theorem in order to calculate
the probability of a specific event given known information, usually referred to
as evidence. Bayes’ Theorem is expressed as:

P (E|H) =
P (H|E)P (H)

P (E)
(1)

BN are widely used in order to cope with uncertainty at a reasoning process
at discrete sample space. BN use inference based on the knowledge of evidence
and the conditional relationship between its nodes. Their implementation is in-
cluded in decision theory for risk analysis and prediction in decision making.
These networks make use of the bayesian probability, which was described by
Heckerman [10] as a person’s degree of belief on a specific event.

The bayesian networks contain nodes (Xi..Xj ..Xn) in order to represent the
set of variables that are considered to influence the domain. The values they
hold might either be discrete or continuous. Nodes are wired together by a se-
ries of direct connections represented by links or arcs. These arcs represent the



relationship of the dependencies between variables. Hence, this networks are
called directed acyclic graphs (DAGS). Further information regarding bayesian
networks is presented by Korb [1] and Russell [2].

4 Bayesian networks for decision imitation

A modeling process was established in order to imitate the decisions taken by
the player. This process was applied to the experimental scenario described later
on the paper. The process can be broken down into three different segments:
Information extraction from the player, bayesian network model creation, and
bayesian network prediction. Figure 1 illustrates the steps followed during ex-
perimentation.

The first step involves information extraction from player. A human player
is briefed about the experiment. The human then plays on specific map for
n number of cycles, where n is equal to 30. Meanwhile, the environment is
sensed and a data log with the state of relevant variables of the environment is
generated. There are a total amount of n logs generated. After the cycles are
done, the logs are merged together to form a database, which will be used for
the training of the bayesian network.

Starcraft
Interface

Data
Base GeNIe

BWAPIAI Module
Starcraft
Interface

Information extraction
Bayesian network 

model creation

Bayesian network prediction

Fig. 1. Implementation Overview

The next step is the bayesian network model creation. The model is generated
with the software known as GeNIe. Initially, we generate the nodes that represent
the variables from the database that will be required for the decision making
process. In order to select those nodes we queried an expert, the player whose
decisions are being imitated, about the variables that influence his decision.



Then, the relationship between variables is sought and defined through arcs on
the model. After the model is defined, the conditional probability tables are
then filled with the calculated probabilities. These probabilities are obtained
by loading the data extracted from the player and performing GeNIe’s built-in
parameter learning.

The last step involves the implementation of the bayesian network prediction.
The experimental map is loaded once more with an modified Starcraft AI module
that make use of the bayesian network. The environment is sensed by the AI
module and the obtained information from the variables are used as evidence
on the bayesian network. Once the propagation is made, we choose the action,
direction, and distance with the highest posteriori probability as the one to be
implemented. The sensing process and execution process are both made every
five game frames. Given the game is running at the fastest speed, these processes
are done, approximately, every one fifth of a second.

5 Experimental setup

The Broodwar Application Programming Interface (BWAPI)[11] was used in
order to implement the bayesian networks in the game. It was through it, as well,
that a link between the game and the bayesian network’s library was created.
BWAPI generates a dynamic library (DLL) that can be loaded into Starcraft:
Broodwar and enable a modified Starcraft AI module to be used.

The map used for the experiments was created on the Starcraft: Campaign
Editor. The fighting area is composed of a 13 x 13 tiles diamond shaped arena.
The fog of war, which forces the environment to be partially observable, was
enabled. This limit the information available by the player’s unit to that available
on their field of vision. This property is also kept when the Starcraft AI module
that contains bayesian network is used.

The units controlled by the player are situated in the middle of the arena
while the opponent enemy forces are situated on the bottom part of it. Once the
map is loaded, there is a 5 second time window for the player to select his units
and establish them as hotkeys for better performance. After the time is spent,
the enemy forces attack the player’s units. The game ends when either forces is
left without units.

5.1 Scenario: 2 vs 3

In the scenario, we deployed two Dragoons from Protoss race and three Hy-
dralisks from the Zerg race. The two Dragoons deployed by the player can defeat
the three opponent’s Hydraliks without any other need than a micromanagement
well done. If it is not performed correctly, the game will end in the player been
defeated.

The data was extracted from the interaction of the player with the setup
previously mentioned on the foretold map. The information is extracted from
the game every five frames throughout the player’s game. The variables obtained



for this scenario are declared on Table 1. The resulting database used for the
training contains data from thirty repetitions. This scenario’s training database
contains over 8000 instances.

Friend1 HP

Next Action
MyHP

Attacked
CurrentTargetDistance

Next Action

NextTargetDirection
Friend1 Direction
Enemy1 Direction
Enemy2 Direction

Enemy2 Distance
NextTargetDistance

Enemy1 Distance
Table 1. Variables for 2 vs 3 Scenario

We tried to keep the bayesian network as simple as it could without compro-
mising the performance. Hence, we consulted the expert in order to design the
corresponding network. The resulting network generated with the player’s aid is
illustrated in Figure 2. According to the player, the unit should decide his next
action depending on his hitpoints, his ally hitpoints, whether it is targeted by
an enemy or not, and the distance to his current target. The direction of the
action to be done by the controlled unit depends on the next action as well as
the direction of his ally and his enemies. In the scenario, a unit must consider the
direction of his ally so they do not collied when they move to a safer place. Fi-
nally, the distance at which the action would be made is defined by the distance
toward the enemies. Regardless the presence of a third enemy, the decision can
be made by considering two enemies. Hence, it can be observed on the proposed
network the lack of the third enemy.

6 Results

The results obtained from the scenario are presented in this section. First, we
present the performance contrast between the Starcraft built-in AI module and
the AI module containing the bayesian network. Then, a comparison between the
decisions taken by the player and the decisions taken by the bayesian network
AI module is made. In this comparison, a set of variables are selected and set
to a specific discretized value. Moreover, the possible output corresponding to
those values is graphed and compared.

The table declares the probability of choosing a specific next action, first
column, given the available evidence, first two rows. In can be observed on the
presented tables that the action chosen by the AI module resembles the decision
taken by the player. This process was repeated for a series of other configurations
of available information. The results are presented on Table 6



Enemy1_D
irection

Enemy1_D
istance

Enemy2_D
irection

Enemy2_D
istance

Friend1_Di
rection

Friend1_HP CurrentTar
getDista...

Attacked
MyHP

Next_Action

NextTarge
tDirection

NextTarge
tDistance

Fig. 2. Bayesian network model for a two Dragoons vs three Hydralisks

6.1 Scenario: 2 vs 3

The first part of the results is a comparison between performances of the Star-
craft built-in AI module and the module that implements the player’s deci-
sions. We elaborated 200 games for each AI module and obtained whether they
achieved victory or not. There was a significant difference in performance be-
tween the AI modules. As express previously on the scenario’s setup, the built-in
AI module is not capable of defeating the opposing units. This caused that the
built-in AI module generated 0% of victories. Nonetheless, if a bayesian network
is used in order to imitate a player’s micromanagement decisions, the expected
percentage of victory increase to 44.5%.

The second part of analysing the results requires a comparison between the
expected decisions according to the player’s information and the decisions taken
by the bayesian network AI module. We generated a series of tables that con-
tains the probability distribution for a specific set of evidence on the game. We
compared the course of action taken by the player, the training set data, with
the one taken by the bayesian network AI module, the test set data. Both sets
of data will be presented as tables representing specific environments and their
prediction.

Table 2 contain the training distribution presented by the player, while Ta-
ble 3 contain the distribution presented by the Starcraft AI module that imple-
mented the bayesian network. The first column of the tables refer to the variable
to be predicted and the corresponding states it contain. The states of the node
are declared on rows on the first column. The rest of the columns in the tables
express the combination the state or set of states established as evidence.

In Table 2 and Table 3 the variable to be predicted, labelled in the first
column, is NextAction. The states of NextAction considered for the comparison
are AttackMove, AttackUnit, PlayerGuard and Move. The rest of the columns
establish the combination of specific data as evidence. Table 2 and Table 3 have



MyHP variable set as Medium, FriendHP set as Full, Attacked set as True and
the distance to the current target,CurrentTargetDistance, with several possible
values: Melee,Ranged1, Ranged2, and Ranged3. Therefore, all of tables presented
declare the variable intended for prediction as well as the variables and states
that are being established as evidence.

Medium
Full
True

Next Action Melee Ranged1 Ranged2 Ranged3

AttackUnit 66.67% 5.26% 0.00% 90.00%

Move 11.11% 84.21% 100% 5.00%

PlayerGuard 22.22% 5.26% 0.00% 5.00%

AttackMove 0.00% 5.26% 0.00% 0.00%
Table 2. Player’s decisions over NextAction considering MyHP = Medium, Friend1 HP
= Full, Attacked = True and CurrentTargetDistance

Medium
Full
True

Next Action Melee Ranged1 Ranged2 Ranged3

AttackUnit 100% 0.00% 0.00% 97.80%

Move 0.00% 100% 100% 0.49%

PlayerGuard 0.00% 0.00% 0.00% 1.71%

AttackMove 0.00% 0.00% 0.00% 0.00%
Table 3. Bayesian network AI module’s decisions over NextAction considering MyHP
= Medium, Friend1 HP = Full, Attacked = True and CurrentTargetDistance

Further comparison was made with the NextTargetDirection node. The re-
sults obtained on the experiments are encouraging. Table 4 presents the prob-
ability distribution of the training data in two different situations. Table 5
contains the probability distribution of the obtained performance of the modi-
fied Starcraft AI —module. Hence, it can be observed that the selection of the
direction an action must be done resemble the selection observed on the player’s
data.

Finally, we present on Table 6 an overview of the behavior of correct and
incorrect decision made by the bayesian network AI module. Correct decision
refers to the match of the state of a variable with the highest probability between
the player’s decisions and the AI module decisions, such as the ones presented
on previous tables. Incorrect decision refer to the existence of discrepancy on
the chosen state of an output between the player’s decisions and the AI module



AttackUnit
Region5

Region4 Region1

Next Target Direction Region3 Region1

Region1 0.00% 92.68%

Region2 0.00% 3.41%

Region3 0.00% 1.46%

Region4 100% 0.00%

Region5 0.00% 0.98%

Region6 0.00% 1.46%
Table 4. Player’s decisions over NextTargetDirection considering NextAction = At-
tackUnit, Friend1 direction = Region5, Enemy2 direction, and Enemy1 direction

AttackUnit
Region5

Region4 Region1

Next Target Direction Region3 Region1

Region1 0.00% 96.80%

Region2 0.00% 0.00%

Region3 0.00% 2.36%

Region4 100% 0.00%

Region5 0.00% 0.00%

Region6 0.00% 0.84%
Table 5. Bayesian network AI module’s decisions over NextTargetDirection consid-
ering NextAction = AttackUnit, Friend1 direction, Enemy2 direction = Region1, and
Enemy1 direction = Region1



decisions, given the same evidence is presented. An example of correct decision
can be shown by considering Table 4 and Table 5. The correct decision refers to
the match between tables where Region4 is selected by both, the player and the
bayesian network AI module, given the first set of evidence.

Bayesian AI module
Scenario 2 vs 3

Correct Decision 80%

Incorrect Decision 20%
Table 6. Bayesian network AI module’s decisions performance over 50 different situ-
ations

6.2 Discussion

The proposed method was designed to imitate player’s decisions in the RTS
game Starcraft. By implementing belief networks we can make use of an expert’s
opinion, in this case a Starcraft player, in order to establish a bayesian network
model that suits his decisions. Moreover, it is complemented by applying the
knowledge of the player game information to obtain the conditional probabilities
of the network. It can be observed on Table 6 that the correct imitation of
decisions of the player’s decisions done by the bayesian network AI module is
done with a high accuracy rate.

The performance observed by the bayesian network AI module excels the per-
formance obtained from the Starcraft built-in AI module. The 44.5% of victories
provided by the experiments establishes the increase on it. This percentage is
partially low given the attacks made by the default Starcraft AI module does not
follow the same pattern every time. For example, the enemies may all attack the
same unit controlled by the player, or they can split to attack both the player’s
units.

Hence, further scenarios were tested as well and their average performance
exceeds the 60% of victories. It is clear that by introducing an external influ-
ence to the built-in Starcraft AI module an increase on performance can be
made. Further research on imitating decisions can be made using the RTS game
Starcraft as test-bed.

7 Conclusion

We presented a bayesian network approach for unit micromanagement in a RTS
game. The results obtained in this research support the hypothesis of a per-
formance improvement on the Starcraft built-in AI module. The importance of
the increase 44.5% in victories is significant given the fact that the default per-
formance is of 0% victories. Moreover, this method enables a performance that



resembles that of the player. In a full RTS game, the advantage of having unit
you controlled synchronized with you own strategies can enrich the gaming expe-
rience for the players. The results also support the fact that research on bayesian
network might lead to interesting work on imitating decisions taken by humans.
The bayesian networks provide a stable, understandable and transparent method
to generate the decision imitation.

There is future work to be done in our research. The proposed learning
method in our research is based on an offline learning. Further work can in-
volve a dynamic updating on the belief network while the player is interacting
with the game. This can enable online learning in order to train a bayesian
network on a full game rather than on a specific map.

References

1. K. Korb, A. Nicholson, Bayesian Artificial Intelligence, Chapman and Hall Edito-
rial(2010)

2. S. Russell and P. Norvig, Artificial Intelligence a Modern Approach, 3rd ed. Pearson
Education, 2009.

3. Blizzard Entertainment: Starcraft, (Accessed in January 2012),
http://us.blizzard.com/en-us/games/sc/

4. Decision System Laboratory, University of Pittsburgh: GeNIe & SMILE. (Accessed
January 2012), http://genie.sis.pitt.edu/

5. J. Cummings: Bayesian networks in video games. Pennsylvania Associataion of Com-
puter and Information Science Educators (2008)

6. G. Synnaeve, P. Bessiere: A Bayesian Model for Opening Prediction in RTS Games
with Application to StarCraft. In: IEEE Conference on Computational Intelligence
and Games (2011)

7. B. G. Weber, M. Mateas: A Data Mining Approach to Strategy Prediction. In: 2009
IEEE Symposium on Computational Intelligence and Games, (2009)

8. G. Synnaeve, P. Bessiere: A Bayesian Model for RTS units control applied to Star-
Craft. In: IEEE Conference on Computational Intelligence and Games (2011)

9. T. Szczepanski, A. Aamodt: Case-based reasoning for improved micromanagement
in Real-time strategy games.(2008)

10. D. Heckerman: A tutorial on learning with Bayesian Networks, Microsoft Research,
Advanced Technology Devision: Microsoft Corporation, US (1995)

11. BWAPI - An API for intereacting with Starcraft: Broodwars (1.16.1), (Accessed
in January 2012), http://code.google.com/p/bwapi/


